LendingClub

Loan Credit Risk Prediction

Author: Adhang Muntaha

Background

- A lending company has to make a decision whether they will accept or decline a loan application
- If the applicant is likely to pay off the loan but they don't approve their application, it may result in a loss of income
- If the applicant is not likely to pay off the loan but they approve their application, it may result in **financial loss**

What Happened?

The **Good** status is when the loan status is either **Current** or **Fully Paid**, otherwise it's **Bad** (risky credit)

Who Are The Borrowers?

- Many borrowers have the words Manager, Service, Director, Assistant, Sale, Teacher, or Nurse in their employment title
- Many borrowers didn't write their employment title, so it's marked as Unknown

Most borrowers apply for loans for the purpose of **debt consolidation**

Are They New Borrowers?

Loan Credit Risk Probability by Issue Date

The **earlier the issue date** is, the higher the probability of a borrower to have a **bad loan status**

Do Interest Rates Matter?

Borrowers with **high-interest rates** have a higher probability to have a **bad loan status** than those with a low-interest rate

Missing Values

Some features have a lot of missing values. Moreover, there are some features that contain no data at all.

Solution:

- Remove features that have too many missing values
- Fill in the missing values using a univariate or multivariate imputation

Feature Normalization

Because some of the numerical features are skewed, I used the yeo-johnson transform to make the data more Gaussian-like

Oversampling With SMOTE

This dataset is imbalanced. Luse SMOTE to make it balanced.

Target Distribution After Oversampling

Model Development

I use the gradient boosted trees model (XGBoost & LightGBM) for model development

Check out the detailed project on my GitHub adhang.github.io

Model Optimization

I use **Optuna** for hyperparameter tuning with tuning strategies:

- I want to avoid either high false negatives or high false positives, therefore I will use the F1 score for model evaluation
- I'm still paying attention to the accuracy score as well since this metric is easier to interpret

Model	Feature Selection	Accuracy	F1 Score
XGBoost	Using All Features	0.971	0.875
	Using 75% Features	0.971	0.876
	Using 50% Features	0.969	0.867
	Using 25% Features	0.955	0.826
LightGBM	Using All Features	0.975	0.891
	Using 75% Features	0.975	0.890
	Using 50% Features	0.972	0.877
	Using 25% Features	0.963	0.850

Conclusion

- Selected model: LightGBM using 75% features
- We should pay more attention to borrowers who meet the criteria below:
 - Earlier issue date
 - High interest rate
- Use targeted ads for potential borrowers based on their needs and occupations